Vertex Contact Graphs of Paths on a Grid
نویسندگان
چکیده
Contact and intersection representations of graphs and particularly of planar graphs have been studied for decades. The by now best known result in the area may be the Koebe-Andreev-Thurston circle packing theorem. A more recent highlight in the area is a result of Chalopin and Gonçalves: every planar graph is an intersection graph of segments in the plane. This boosted the study of intersection and contact graphs of restricted classes of curves. In this paper we study planar graphs that are VCPG, i.e. graphs admitting a representation as Vertex Contact graph of Paths on a Grid. In such a representation the vertices of G are represented by a family of interiorly disjoint grid-paths. Adjacencies are represented by contacts between an endpoint of one grid-path and an interior point of another grid-path. Defining u→ v if the path of u ends on path of v we obtain an orientation on G from a VCPG representation. To get hand on the bends of the grid path the 2-orientation is not enough. We therefore consider pairs (α,ψ): a 2-orientation α and a flow ψ in the angle graph. The 2-orientation describes the contacts of the ends of a grid-path and the flow describes the behavior of a grid-path between its two ends. We give a necessary and sufficient condition for such a pair (α,ψ) to be realizable as a VCPG. Using realizable pairs we show that every planar (2,2)-tight graph can be represented with at most 2 bends per path and that this is tight (i.e. there exist (2,2)-tight graphs that cannot be represented with at most one bend per path). Using the same methodology it is easy to show that loopless planar (2,1)-sparse graphs have a 4-bend representation and loopless planar (2,0)-sparse graphs have 6-bend representation. We do not believe that the latter two are tight, we conjecture that loopless planar (2,0)-sparse graphs have a 3-bend representation.
منابع مشابه
On independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملOn contact graphs of paths on a grid
In this paper we consider Contact graphs of Paths on a Grid (CPG graphs), i.e. graphs for which there exists a family of interiorly disjoint paths on a grid in one-to-one correspondance with their vertex set such that two vertices are adjacent if and only if the corresponding paths touch at a grid-point. We examine this class from a structural point of view which leads to constant upper bounds ...
متن کاملVertex Contact Representations of Paths on a Grid
We study Vertex Contact representations of Paths on a Grid (VCPG). In such a representation, the vertices of G are represented by a family of interiorly disjoint grid-paths on a square grid. Adjacencies are represented by contacts between an endpoint of one grid-path and an interior point of another grid-path. Defining u → v if the path of u ends on the path of v, we obtain an orientation on G ...
متن کاملRecognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths in a Grid
We investigate graphs that can be represented as vertex intersections of horizontal and vertical paths in a grid, known as B0-VPG graphs. Recognizing these graphs is an NP-hard problem. In light of this, we focus on their subclasses. In the paper, we describe polynomial time algorithms for recognizing chordal B0-VPG graphs, and for recognizing B0-VPG graphs that have a representation on a grid ...
متن کاملUnit-length embedding of cycles and paths on grid graphs
Although there are very algorithms for embedding graphs on unbounded grids, only few results on embedding or drawing graphs on restricted grids has been published. In this work, we consider the problem of embedding paths and cycles on grid graphs. We give the necessary and sufficient conditions for the existence of cycles of given length k and paths of given length k between two given vertices ...
متن کامل